Тончайшая кристаллическая пленка заставляет электроны двигаться в 7 раз быстрее
Ученые разработали новый тип тончайшего кристаллического пленочного полупроводника, который позволяет электронам двигаться в семь раз быстрее, чем в традиционных полупроводниках, — и это может иметь огромные последствия для электронных устройств.
В исследовании, опубликованном в журнале Materials Today Physics, физики создали чрезвычайно тонкую пленку из кристаллического материала, называемого тройным тетрадимитом.
Пленка — шириной всего 100 нанометров, или около одной тысячной толщины человеческого волоса — была создана с помощью процесса, называемого молекулярно-лучевой эпитаксией , которая включает в себя точное управление пучками молекул для построения материала атом за атомом. Этот процесс позволяет создавать материалы с минимальными изъянами или дефектами, обеспечивая большую подвижность электронов, меру того, насколько легко электроны перемещаются через материал под действием электрического поля.
Когда ученые подали электрический ток на пленку, они зафиксировали электроны, движущиеся с рекордной скоростью 10 000 квадратных сантиметров на вольт-секунду (см^2/Вс). Для сравнения, электроны обычно движутся со скоростью около 1400 см^2/Вс в стандартных кремниевых полупроводниках и значительно медленнее в традиционной медной проводке.
Эта заоблачная подвижность электронов приводит к лучшей проводимости. Это, в свою очередь, прокладывает путь для более эффективных и мощных электронных устройств, которые выделяют меньше тепла и тратят меньше энергии.
Исследователи сравнили свойства пленки с «шоссе без движения», заявив, что такие материалы «будут необходимы для более эффективных и устойчивых электронных устройств, которые могут выполнять больше работы с меньшими затратами энергии». Потенциальные области применения включают носимые термоэлектрические устройства, преобразующие отработанное тепло в электричество, и «спинтронные» устройства, которые используют спин электрона вместо заряда для обработки информации, заявили ученые.
«Раньше то, чего люди достигли в плане подвижности электронов в этих системах, было похоже на движение на строящейся дороге — вы застряли, вы не можете ехать, это пыльно и это беспорядок», — сказал Джагадиш Мудера из Массачусетского технологического института. «В этом новом оптимизированном материале это похоже на движение по Массачусетскому тракту без движения».
Ученые измерили подвижность электронов в материале, поместив кристаллическую пленку в чрезвычайно холодную среду под магнитным полем. Затем они пропустили через нее электрический ток и измерили квантовые колебания, которые возникают, когда электрическое сопротивление колеблется в ответ на магнитное поле.
Даже крошечные дефекты в материале могут повлиять на электронную подвижность, препятствуя движению электронов. Таким образом, ученые надеются, что совершенствование процесса создания пленки даст еще лучшие результаты.
«Это показывает, что можно сделать гигантский шаг вперед, если правильно контролировать эти сложные системы», — сказал Мудера. «Это говорит нам, что мы на правильном пути, и у нас есть правильная система, чтобы двигаться дальше, продолжать совершенствовать этот материал вплоть до еще более тонких пленок и бесконтактной связи для использования в будущей спинтронике и носимых термоэлектрических устройствах».
Читайте также:
Кубанские ученые создали быстро заживляющую раны пленку из свиной кожи
Фото из открытых источников В Кубанском государственном медицинском университете была разработана...
Впервые обнаружено движение электронов со «световой скоростью» в четырех измерениях
Фото из открытых источников Неуловимое поведение электронов наконец было выделено из более...
Ученые открыли способ «выращивать» транзисторы субнанометрового размера
Фото из открытых источников Исследовательская группа под руководством директора Центра квантовых...
Создана пластиковая пленка, которая уничтожает вирусы
Фото из открытых источников Ирландские исследователи из Королевского университета Белфаста создали...
Самоочищающийся материал прозрачнее стекла и охлаждает помещения
Фото из открытых источников Исследователи Institute of Microstructure Technology (Германия)...
Ученые разработали плазменную установку для производства кислорода на Марсе
Фото из открытых источников Международная группа ученых под руководством Массачусетского...
Nature: физики обнаружили в графене явление, открывающее путь квантовым вычислениям
Фото из открытых источников Физики из Massachusetts Institute of Technology (MIT) обнаружили, что...
Физики открыли странную форму кристалла, в котором электроны не могут двигаться
Фото из открытых источников Квантовые законы дорожного движения, примененные к трехмерному...
Остановка световых волн в кристалле обещает новые способы управления фотонами
Фото из открытых источников Поиск новых способов замедления мимолетных волн света или даже...
Армированная пленка для теплиц: надежная защита и долговечность
Источник иллюстрации / фото: gazeta.kg Пленка армированная — это инновационный материал,...
Эффект изгиба электронов может улучшить память компьютера
Фото из открытых источников Новый магнитный материал, разработанный физиками RIKEN, может...
Физики получили оптимальные для лечения рака наночастицы из кремния и золота
Растворы наночастиц с золотом (слева) и без него (справа). Источник: Александр Шевлягин Ученые...